Right is a literature review written in 2022 on the model history, limitations to current understanding, and science communication of AMOC. The PDF can be interacted with here or read in larger print by clicking the "pop out" icon to the top right of the embedded document.
For more information on the topics discussed by this project, please read some of the works below. These sources are in the Harvard style and have been used for contextual knowledge throughout this site in addition to the literature review.
Alkhayuon, H., Ashwin, P., Jackson, L., Quinn, C. and Wood, R. (2019). Basin bifurcations, oscillatory instability and rate-induced thresholds for Atlantic meridional overturning circulation in a global oceanic box model. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 475(2225), pp.20190051. Available at: https://royalsocietypublishing.org/doi/10.1098/rspa.2019.0051 (Accessed 27 February 2022).
Baraniuk, C. (2021). Why is there a chip shortage? [online] BBC News. Available at: https://www.bbc.co.uk/news/business-58230388 (Accessed 27 February 2022).
Beasley, M. (2013). Practical web analytics for user experience: how analytics can help you understand your users. Amsterdam: Morgan Kaufmann, pp.34,80,83. Available at: https://ebookcentral.proquest.com/lib/exeter/detail.action?docID=1249219 (Accessed 07 March 2022).
Bourlès, B., Araujo, M., McPhaden, M.J., Brandt, P., Foltz, G.R., Lumpkin, R., Giordani, H., Hernandez, F., Lefèvre, N., Nobre, P., Campos, E., Saravanan, R., Trotte‐Duhà, J., Dengler, M.,Hahn, J., Hummels, R., Lübbecke, J.F., Rouault, M., Cotrim, L. and Sutton, A. (2019). PIRATA: A Sustained Observing System for Tropical Atlantic Climate Research and Forecasting. Earth and Space Science, [online] 6(4), pp.577–616. Available at: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018EA000428 (Accessed 7 March 2022).
Buis, A. (2015). NASA Finds New Way to Track Ocean Currents from Space. [online] NASA Jet Propulsion Laboratory (JPL). Available at: https://www.jpl.nasa.gov/news/nasa-finds-new-wayto-track-ocean-currents-from-space (Accessed 3 March 2022).
Caesar, L., McCarthy, G.D., Thornalley, D.J.R., Cahill, N. and Rahmstorf, S. (2021). Current Atlantic Meridional Overturning Circulation weakest in last millennium. Nature Geoscience, [online] 14(3), pp.118–120. Available at: https://www.nature.com/articles/s41561-021-00699-z (Accessed 27 February 2022).
Cessi, P. (1994). A Simple Box Model of Stochastically Forced Thermohaline Flow. Journal of Physical Oceanography, [online] 24(9), pp.1911–1920. Available at:
https://journals.ametsoc.org/view/journals/phoc/24/9/1520-0485_1994_024_1911_asbmos_2_0_co_2.xml (Accessed 6 March 2022).
Cessi, P. (2013). Voyager: What would cause thermohaline circulation in the oceans to stop? [online] Scripps Institution of Oceanography. Available at: https://scripps.ucsd.edu/news/voyager-what-would-cause-thermohaline-circulation-oceans-stop (Accessed 9 July 2021).
Cheng, L., Trenberth, K. E., Gruber, N., Abraham, J. P., Fasullo, J. T., Li, G., Mann, M. E., Zhao, X., and Zhu, J. (2020). Improved Estimates of Changes in Upper Ocean Salinity and the Hydrological Cycle. Journal of Climate 33, 23, 10357-10381. Available at: https://doi.org/10.1175/JCLI-D-20-0366.1 (Accessed 15 April 2021).
Cronin, M.F., Gentemann, C.L., Edson, J., Ueki, I., Bourassa, M., Brown, S., Clayson, C.A., Fairall, C.W., Farrar, J.T., Gille, S.T., Gulev, S., Josey, S.A., Kato, S., Katsumata, M., Kent, E., Krug, M., Minnett, P.J., Parfitt, R., Pinker, R.T. and Stackhouse, P.W. (2019). Air-Sea Fluxes With a Focus on Heat and Momentum. Frontiers in Marine Science, [online] 6. Available at: https://www.frontiersin.org/articles/10.3389/fmars.2019.00430/full (Accessed 7 March 2022).
Cruse, A. M. (2019). ‘Thermohaline circulation (THC)’, Salem Press Encyclopedia of Science. Available at: http://search.ebscohost.com.uoelibrary.idm.oclc.org/login.aspx?direct=true&db=ers&AN=89475870&site=eds-live&scope=site (Accessed 9 July 2021).
Dagan, G., Stier, P. and Watson‐Parris, D. (2020). Aerosol Forcing Masks and Delays the Formation of the North Atlantic Warming Hole by Three Decades. Geophysical Research Letters, [online] 47(22). Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020GL090778 (Accessed 27 February 2022).
Davies, A.J. and Guinotte, J.M. (2011). Global Habitat Suitability for Framework-Forming ColdWater Corals. PLoS ONE, 6(4), pp.18483. Available at:
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0018483 (Accessed 15 February 2022).
Dutch, S. I. (2019). ‘Ocean dynamics’, Salem Press Encyclopedia of Science. Available at:
http://search.ebscohost.com.uoelibrary.idm.oclc.org/login.aspx?direct=true&db=ers&AN=89475789&site=eds-live&scope=site (Accessed 15 April 2021).
Else, H. (2020). Nature journals reveal terms of landmark open-access option. Nature, [online] 588(7836), pp.19–20. Available at: https://www.nature.com/articles/d41586-020-03324-y#:~:text=From%202021%2C%20the%20publisher%20will,and%20are%20financed%20by%20subscriptions (Accessed 7 March 2022).
Feulner, G., Rahmstorf, S., Levermann, A. and Volkwardt, S. (2013). On the Origin of the Surface Air Temperature Difference between the Hemispheres in Earth’s Present-Day Climate. Journal of Climate, 26(18), pp.7136–7150. Available at: https://www.researchgate.net/publication/274494740_On_the_Origin_of_the_Surface_Air_Temperature_Difference_between_the_Hemispheres_in_Earth's_Present-Day_Climate (Accessed 6 March 2022).
Frajka-Williams, E., Meinen, C.S., Johns, W.E., Smeed, D.A., Duchez, A., Lawrence, A.J., Cuthbertson, D.A., McCarthy, G.D., Bryden, H.L., Baringer, M.O., Moat, B.I. and Rayner, D. (2016). Compensation between meridional flow components of the Atlantic MOC at 26° N.
Ocean Science, 12(2), pp.481–493. Available at: https://www.researchgate.net/publication/302200856_Compensation_between_meridional_flow_components_of_the_Atlantic_MOC_at_26_N (Accessed 3 March 2022).
Frajka-Williams, E., Moat, B.I., Smeed, D.A., Rayner, D., Johns, W.E., Baringer, M.O., Volkov, D., Collins, J. (2021). Atlantic meridional overturning circulation observed by the RAPIDMOCHA-WBTS (RAPID-Meridional Overturning Circulation and Heatflux Array-Western Boundary Time Series) array at 26N from 2004 to 2020 (v2020.1), British Oceanographic Data Centre - Natural Environment Research Council, UK. doi:10.5285/cc1e34b3-3385-662b-e053-6c86abc03444
Freitas, C. R. (2019). Latent heat flux. Salem Press Encyclopedia of Science. Available at: https://search-ebscohostcom.uoelibrary.idm.oclc.org/login.aspx?direct=true&db=ers&AN=89475732&site=edslive&scope=site (Accessed 7 March 2022).
Guan, Y.P. and Huang, R.X. (2008). Stommel’s Box Model of Thermohaline Circulation Revisited—The Role of Mechanical Energy Supporting Mixing and the Wind-Driven Gyration. Journal of Physical Oceanography, 38(4), pp.909–917. Available at: https://journals.ametsoc.org/view/journals/phoc/38/4/2007jpo3535.1.xml (Accessed 3 March 2022).
IPCC (AR6). (2021). contribution by Working Group I to the Sixth Assessment Report. [online] pp.37, 81-82. Available at: https://www.ipcc.ch/assessment-report/ar6/ (Accessed 27 January 2022).
Jackson, L. and Wood, R. (2017). Timescales of AMOC decline in response to fresh water forcing. Climate Dynamics, 51(4), pp.1333-1350. Available at:
https://link.springer.com/article/10.1007/s00382-017-3957-6 (Accessed 27 February 2022).
Katavouta, A. and Williams, R. G. (2021). ‘Ocean carbon cycle feedbacks in CMIP6 models: contributions from different basins’, Biogeosciences, 18(10), pp. 3189–3218. doi: 10.5194/bg18-3189-2021.
Keil, P., Mauritsen, T., Jungclaus, J., Hedemann, C., Olonscheck, D. and Ghosh, R. (2020). Multiple drivers of the North Atlantic warming hole. Nature Climate Change, [online] 10(7), pp.667–671. Available at: https://www.nature.com/articles/s41558-020-0819-8 (Accessed 3 March 2022).
Khan, S. (2017). Compliance and Risk Management. [online] Available at: https://wwwlexisnexiscom.uoelibrary.idm.oclc.org/uk/legal/results/enhdocview.do?docLinkInd=true&ersKey=23_T419725277&format=GNBFULL&startDocNo=0&resultsUrlKey=0_T419725278&backKey=20_T419725279&csi=385530&docNo=1&scrollToPosition=0 (Accessed 12 January 2022).
Lenton, T.M., Rockström, J., Gaffney, O., Rahmstorf, S., Richardson, K., Steffen, W. and Schellnhuber, H.J. (2019). Climate tipping points — too risky to bet against. Nature, [online] 575(7784), pp.592–595. Available at: https://www.nature.com/articles/d41586-019-03595-0 (Accessed 18 November 2021).
Li, H. and Fedorov, A.V. (2021). Persistent freshening of the Arctic Ocean and changes in the North Atlantic salinity caused by Arctic sea ice decline. Climate Dynamics, [online] 57(11-12), pp.2995–3013. Available at: https://link.springer.com/article/10.1007/s00382-021-05850-5 (Accessed 4 March 2022).
Little, C.M., Hu, A., Hughes, C.W., McCarthy, G.D., Piecuch, C.G., Ponte, R.M. and Thomas, M.D. (2019). The Relationship Between U.S. East Coast Sea Level and the Atlantic Meridional Overturning Circulation: A Review. Journal of Geophysical Research: Oceans, [online] 124(9), pp.6435–6458. Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JC015152 (Accessed 14 December 2021).
Liu, M. and Tanhua, T. (2019). Characteristics of Water Masses in the Atlantic Ocean based on GLODAPv2 data. Copernicus. Available at: https://doi.org/10.5194/os-2018-139 (Accessed 27 February 2022).
Liu, Z., Zhang, S., Shen, Y., Guan, Y. and Deng, X. (2021). A Study of Capturing AMOC Regime Transition through Observation-Constrained Model Parameters. [online] Available at: https://pdfs.semanticscholar.org/2321/19f1c775dbbc7f7049a7b263842372fceec4.pdf (Accessed 8 March 2022).
Luo, Y. and Schuur, E.A.G. (2020). Model parameterization to represent processes at unresolved scales and changing properties of evolving systems. Global Change Biology, [online] 26(3), pp.1109–1117. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.14939 (Accessed 13 February 2022).
McCarthy, G. D., Smeed, D. A., Johns, W. E., Frajka-Williams, E., Moat, B. I., Rayner, D., Baringer, M. O., Meinen, C. S., Collins, J., & Bryden, H. L. (2015). Measuring the Atlantic Meridional Overturning Circulation at 26oN. Progress in Oceanography, 130, 91-111. doi:10.1016/j.pocean.2014.10.00
Mecking, J.V., Drijfhout, S.S., Jackson, L.C. and Andrews, M.B. (2017). The effect of model bias on Atlantic freshwater transport and implications for AMOC bi-stability. Tellus A: Dynamic Meteorology and Oceanography, 69(1), pp.1299910. Available at: https://www.tandfonline.com/doi/full/10.1080/16000870.2017.1299910 (Accessed 18 January 2022).
MET Office. (2018). Global circulation patterns. [online] Met Office. Available at: https://www.metoffice.gov.uk/weather/learn-about/weather/atmosphere/global-circulationpatterns (Accessed 6 March 2022).
Naimi, B. and Voinov, A. (2012). StellaR: A software to translate Stella models into R opensource environment. Environmental Modelling & Software, [online] 38, pp.117–118. Available at: https://www.sciencedirect.com/science/article/abs/pii/S1364815212001673?via%3Dihub (Accessed 7 March 2022).
Nasa Earth Observatory. (2006). Explaining Rapid Climate Change: Tales from the Ice. [online] Available at: https://earthobservatory.nasa.gov/features/Paleoclimatology_Evidence/paleoclimatology_evidence_2.php (Accessed 27 February 2022).
National Oceanic and Atmospheric Association (NOAA). (2022). PIRATA data display and delivery. Available at: https://www.pmel.noaa.gov/tao/drupal/disdel/ (Accessed 3 March 2022).
Ola. (2015). 2 Box Models and Climate – Earth Modeling. [online] Available at: http://publish.illinois.edu/olaogunbayo/2015/11/17/2-box-models-and-climate/ (Accessed 18 March 2022).
Rahmstorf, S. (1996). On the freshwater forcing and transport of the Atlantic thermohaline circulation. Climate Dynamics, [online] 12(12), pp.799–811. Available at:
https://link.springer.com/article/10.1007/s003820050144 (Accessed 27 February 2022).
Rahmstorf, S. (2006). Thermohaline Ocean Circulation. [online] Available at: http://www.pikpotsdam.de/~stefan/Publications/Book_chapters/rahmstorf_eqs_2006.pdf (Accessed 3 March 2022).
Rahmstorf, S. (2021). The Atlantic Overturning Circulation. YouTube. Available at:
https://www.youtube.com/watch?v=6wFsibz5kvw&ab_channel=EarthSystemAnalysisPotsdamInstitute (Accessed 21 January 2022).
Rahmstorf, S. and Ganopolski, A. (1999). Simple Theoretical Model May Explain Apparent Climate Instability. Journal of Climate, 12(5), pp.1349–1352. Available at:
https://journals.ametsoc.org/view/journals/clim/12/5/1520-0442_1999_012_1349_stmmea_2.0.co_2.xml (Accessed 27 February 2022).
Rahmstorf, S., Box, J.E., Feulner, G., Mann, M.E., Robinson, A., Rutherford, S. and Schaffernicht, E.J. (2015). Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nature Climate Change, [online] 5(5), pp.475–480. Available at: https://www.nature.com/articles/nclimate2554 (Accessed 27 February 2022).
RAPID. (2012). RAPID: monitoring the Atlantic Meridional Overturning Circulation at 26.5N since 2004. [online] Available at: https://rapid.ac.uk/rapidmoc/overview.php (Accessed 7 March 2022).
Roberts, C.D., Jackson, L., McNeall, D. (2014). Is the 2004–2012 reduction of the Atlantic meridional overturning circulation significant? Geophys Res Lett 41(9):3204–3210. doi:10.1002/2014gl059473
Servain, J., Busalacchi, A.J., McPhaden, M.J., Moura, A.D., Reverdin, G., Vianna, M. and Zebiak, S.E. (1998). A Pilot Research Moored Array in the Tropical Atlantic (PIRATA). Bulletin of the American Meteorological Society, 79(10), pp.2019–2031. Available at:
https://www.researchgate.net/publication/239795476_A_pilot_research_moored_array_in_the_tropical_Atlantic_PIRATA (Accessed 3 March 2022).
Stommel, H (S61). (1961). Thermohaline Convection with Two Stable Regimes of Flow. Tellus,[online] 13(2), pp.224–230. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.2153-3490.1961.tb00079.x?saml_referrer= (Accessed 18 January 2022).
Thompson, J. and Sieber, J. (2010). Climate tipping as a noisy bifurcation: a predictive technique. IMA Journal of Applied Mathematics, 76(1), pp.27-46. Available at:
https://www.researchgate.net/publication/45928194_Climate_tipping_as_a_noisy_bifurcation_A_predictive_technique (Accessed 9 July 2021).
Thual, O. and Mcwilliams, J.C. (1992). The catastrophe structure of thermohaline convection in a two-dimensional fluid model and a comparison with low-order box models. Geophysical & Astrophysical Fluid Dynamics, 64(1-4), pp.67–95. Available at: https://www.researchgate.net/publication/248922489_The_catastrophe_structure_of_thermohaline_convection_in_a_two-dimensional_fluid_model_and_comparison_with_loworder_box_models (Accessed 6 March 2022).
Timmermann, A., Okumura, Y., An, S.-I. ., Clement, A., Dong, B., Guilyardi, E., Hu, A., Jungclaus, J.H., Renold, M., Stocker, T.F., Stouffer, R.J., Sutton, R., Xie, S.-P. . and Yin, J. (2007). The Influence of a Weakening of the Atlantic Meridional Overturning Circulation on ENSO. Journal of Climate, 20(19), pp.4899–4919. Available at:
https://journals.ametsoc.org/view/journals/clim/20/19/jcli4283.1.xml (Accessed 27 February 2022).
Toggweiler, J.R. and Key, R.M. (2001). Thermohaline Circulation. Encyclopedia of Ocean Sciences, [online] pp.2941–2947. Available at: https://www.sciencedirect.com/science/article/pii/B012227430X001112 (Accessed 27 February 2022).
Tory, K.J. and Dare, R.A. (2015). Sea Surface Temperature Thresholds for Tropical Cyclone Formation. Journal of Climate, [online] 28(20), pp.8171–8183. Available at:
https://journals.ametsoc.org/view/journals/clim/28/20/jcli-d-14-00637.1.xml (Accessed 13 March 2022).
Tziperman, E. (1997). Inherently unstable climate behaviour due to weak thermohaline ocean circulation. Nature, [online] 386(6625), pp.592–595. Available at: https://www.nature.com/articles/386592a0 (Accessed 3 March 2022).
Vallis, G.K., Parker, D.J. and Tobias, S.M. (2019). A simple system for moist convection: the Rainy–Bénard model. Journal of Fluid Mechanics, 862, pp.162–199. Available at: https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/abs/simple-systemfor-moist-convection-the-rainybenard-model/87F3DAC22778F3C277A05C73DD2BE5B5 (Accessed 7 March 2022).
von Krogh, G. and Spaeth, S. (2007). The open source software phenomenon: Characteristics that promote research. The Journal of Strategic Information Systems, [online] 16(3), pp.236–253. Available at: https://www.sciencedirect.com/science/article/pii/S096386870700025X (Accessed 12 January 2022).
von Krogh, G. and von Hippel, E. (2006). The Promise of Research on Open Source Software. Management Science, 52(7), pp.975–983. Available at: https://pubsonline.informs.org/doi/10.1287/mnsc.1060.0560 (Accessed 12 January 2022).
West, J.D. and Bergstrom, C.T. (2021). Misinformation in and about science. Proceedings of the National Academy of Sciences, [online] 118(15). Available at:
https://www.pnas.org/content/118/15/e1912444117 (Accessed 18 January 2022).
Williamson, M.S., Collins, M., Drijfhout, S.S., Kahana, R., Mecking, J.V. and Lenton, T.M. (2018). Effect of AMOC collapse on ENSO in a high resolution general circulation model. Climate Dynamics, 50(7-8), pp.2537–2552. Available at: https://link.springer.com/article/10.1007/s00382-017-3756-0#citeas# (Accessed 27 February 2022).
World Climate Research Programme (WCRP). (2019). Climate Model Intercomparison Project6. [online] Available at: https://esgf-node.llnl.gov/projects/cmip6/ (Accessed 9 July 2021).
Worthington, E.L., Moat, B.I., Smeed, D.A., Mecking, J.V., Marsh, R. and McCarthy, G.D. (2021). A 30-year reconstruction of the Atlantic meridional overturning circulation shows no decline. Ocean Science, [online] 17(1), pp.285–299. Available at:https://os.copernicus.org/articles/17/285/2021/ (Accessed 12 November 2021).
Yan, K.-K. and Gerstein, M. (2011). The Spread of Scientific Information: Insights from the Web Usage Statistics in PLoS Article-Level Metrics. PLoS ONE, [online] 6(5). Available at: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0019917 (Accessed 18 January 2022).
Yixiao-Zhang. (2020). A box model for AMOC. [online] GitHub. Available at: https://github.com/Yixiao-Zhang/AmocBoxModel (Accessed 18 January 2022).